Проектирование конструкций железобетонного каркаса в среде T-FLEX CAD
Автор: П.В. Перфильев
П.В. Перфильев
Конструкторское бюро НПФ «РОСС МТК» (г.Северодвинск)
В конструкторском бюро НПФ «РОСС МТК» для решения задач промышленного проектирования уже достаточно давно и успешно применяется система T-FLEX CAD. В процессе выполнения различных, порой достаточно сложных проектов был разработан комплекс параметрических библиотек для проектирования энергетических объектов, включая детали трубопроводов, опоры и подвески, трубопроводную арматуру, оборудование, металлоконструкции, фундаменты. При проектировании промышленных энергетических объектов здания и сооружения, как правило, проектировались в металлических конструкциях. При этом была разработана методика проектирования металлоконструкций на основе механизма планировки, реализованного в программном комплексе T-FLEX CAD. Как показала практика проектирования, метод планировок оказался очень эффективным при проектировании металлических конструкций.
На определенном этапе руководством было принято решение о развитии сектора проектирования гражданских объектов. Сначала нам попадались объекты в металлическом каркасе, но однажды появился объект, который необходимо было выполнить в железобетонном каркасе. Встал вопрос о программном обеспечении проектных работ применительно к новому направлению.
На рынке программного обеспечения представлено довольно много программ, ориентированных на проектирование железобетонных конструкций, и значительная часть из них работает на платформе AutoCAD. Приобретение новой системы потребовало бы переучивания персонала на новый программный продукт, а следовательно, и новых финансовых затрат, решения вопросов, связанных с увязкой библиотек с номенклатурой местных поставщиков ЖБИ, и т.п. В связи с этим было принято решение адаптировать уже используемую систему T-FLEX CAD для решения задач проектирования железобетонных конструкций, тем более что опыт создания подобных библиотек для проектирования металлоконструкций уже был, и достаточно успешный.
С учетом реализуемых проектов разрабатываемая система была ориентирована на проектирование железобетонных каркасных общественных и гражданских зданий, выполненных по серии 1.020-1/87 (рис. 1).
Рис. 1. Пример фрагмента каркаса здания торгово-развлекательного комлекса |
Как известно, любые каркасные конструкции характеризуются наличием повторяющихся элементов, из которых и формируется каркас здания. Элементы эти типовые, номенклатура их достаточно ограничена, что позволяет создать модели основных типовых элементов конструкций, из которых и формируется в последующем каркас здания. В используемой системе твердотельного моделирования T-FLEX CAD 3D для решения подобных задач применяются библиотеки параметрических фрагментов. Простота создания подобных библиотек силами самих проектировщиков, без привлечения программистов — одно из главных достоинств T-FLEX CAD. Следует добавить, что библиотеки создаются, как правило, параллельно с работой над проектом.
Важный вопрос, решаемый при разработке параметрических библиотек, — работать в 2D или 3D? Что касается проектирования металлоконструкций, то, по мнению автора, ответ должен быть однозначным — 3D-моделирование, а при проектировании железобетонных каркасов возможно использование как 2D-, так и 3D-моделирования. При этом конечный результат представляет собой плоские чертежи. Мы решили все-таки ориентироваться на 3D-моделирование и создавать параметрические библиотеки 3D-фрагментов. Такой выбор был сделан потому, что наши конструкторы к этому подходу привычны, да и при работе над проектом встречаются ситуации, когда без 3D-моделирования не обойтись, например для получения разрезов по каркасу, визуального контроля собираемости элементов каркаса и т.д. Следует также учитывать, что используемый нами метод планировок предполагает создание в каждом параметрическом фрагменте, наряду с трехмерной моделью, и 2D-модели, а при необходимости можно без затруднений работать и с двумерными моделями.
При проектировании конструкций каркасных зданий разрабатывается много чертежей раскладки элементов конструкций — план свайного поля, план фундаментов, планы колонн по высотным отметкам, планы раскладки ригелей и т.д. (рис. 2). Опыт использования T-FLEX CAD при моделировании металлических конструкций показал, что для сокращения сроков выпуска документации удобнее вести так называемое комбинированное проектирование.
Рис. 2. Примеры чертежей планов свай, связей, ригелей и плит перекрытий |
Суть предлагаемого подхода в следующем. Обычно при 3D-проектировании мы сначала создаем трехмерную модель здания, сооружения, а затем, выполняя проекции и разрезы, получаем необходимую проектную документацию. Но метод планировок, который прекрасно показал себя при проектировании металлоконструкций, предполагает использование 2D-фрагментов, вставляемых на активную рабочую плоскость, по которым далее автоматически создаются трехмерные модели. Поэтому фрагменты библиотек проектирования конструкций железобетонного каркаса было решено создавать таким образом, чтобы вставка 2D-фрагментов позволяла сразу формировать чертежи планов размещения элементов каркаса на отдельных листах. Для каждого плана раскладки элементов по отметкам этажей (план свай, фундаментов, колонн, ригелей и т.п.) в файле моделей создается отдельная страница. На ней создается соответствующая рабочая плоскость, причем рабочие плоскости по высотной отметке могут совпадать (например, план ригелей на отметке +3,300 и план плит перекрытия на отметке +3,300). Масштаб, как правило, выбирается одинаковый для всех страниц. А далее по страницам размещаются соответствующие фрагменты из библиотек. В результате получаем 3D-модель каркаса здания, при этом основные чертежи уже созданы в процессе построения модели, а необходимые разрезы можно получить стандартными методами T-FLEX CAD (рис. 3).
Рис. 3. Пример построения модели каркаса здания |
При разработке библиотек параметрических фрагментов обязательное требование — автоматическое получение необходимых спецификаций на основе информации, включенной в фрагменты, что тоже достаточно легко осуществляется в выбранной системе проектирования.
Для реализации предлагаемой методики проектирования был разработан комплект библиотек параметрических фрагментов, включающий следующие типовые элементы:
- серия 1.411.1-2/91 «Свайные фундаменты»;
- серия 1.020-1 «Колонны для зданий с высотой этажа 3,3; 3,6; 4,2; 4,8; 5,4; 6,0 м»;
- серия 1.020-1 «Ригели высотой 450, 600 мм»;
- серия 1.020-1 «Диафрагмы жесткости»;
- серия 1.020-1 «Диафрагмы жесткости плоские»;
- серия 1.020-1 «Связи стальные»;
- серия 1.041.1-3 «Сборные железобетонные многопустотные плиты перекрытий многоэтажных общественных зданий, производственных и вспомогательных зданий промышленных предприятий»;
- серия 1.042.1-2 «Сборные железобетонные плиты перекрытий типа «ТТ» и «Т» для многоэтажных общественных и производственных зданий»;
- серия 1.442.1-1.87 «Плиты перекрытий железобетонные ребристые высотой 400 мм, укладываемые на полки ригелей»;
- серия 1.050.9-4.93 «Лестницы для многоэтажных общественных, административных и бытовых зданий и производственных зданий промышленных предприятий».
Важно отметить, что поскольку библиотеки формируются параллельно с разработкой проектной документации, то это позволяет сразу по ходу их создания вносить необходимые коррективы для повышения эффективности использования библиотек.
Учитывая предыдущий опыт работы с параметрическими библиотеками, при создании фрагментов применялись новые подходы к организации диалогов в файлах фрагментов. Они в первую очередь направлены на повышение информативности диалогов и упрощение задания параметров фрагментов при их использовании (на рис. 4 показан пример диалога фрагмента «Связь»). Суть изменений заключается в замене раскрывающихся списков изменяемых параметров фрагмента на радиокнопки.
Рис. 4. Диалог фрагмента «Связь» (новый и старый варианты) |
Каркасы зданий строятся на определенной сетке (6 x 6, 6 x 9 и т.п.). При этом многие элементы каркаса (колонны, ригели, плиты перекрытий) повторяются с определенным шагом. Это позволяет использовать массивы при проектировании планов размещения подобных элементов. Можно, конечно, вставить фрагмент в сборку, а потом применить к нему операцию «Массив». Но эффективнее создать комбинированные фрагменты, в которых элементы уже созданы массивами. В этом случае мы просто вставляем в сборочную модель фрагмент и задаем для него дополнительно переменные массива — количество элементов и шаг (хотя последний для многих элементов и не нужен, так как размеры элементов привязаны к сетке колонн здания). По такой схеме созданы фрагменты — массивы ригелей, плит перекрытий и т.п. Для примера на рис. 5 показан фрагмент «Ригель РДП_600-массив».
Рис. 5. Фрагмент «Ригель РДП_600-массив» |
Несмотря на то что многие фрагменты, включенные в библиотеки параметрических фрагментов, моделируют типовые изделия по строительным сериям, в определенных случаях при разработке проектной документации возникает необходимость выпуска чертежей на некоторые изделия (опалубочные чертежи фундаментов, чертежи армирования фундаментов, схемы размещения дополнительных закладных в колоннах и ригелях и т.п.). Для реализации этого в библиотеку включены фрагменты с подготовленными параметрическими чертежами. Для примера на рис. 6 показана модель железобетонного ростверка по серии 1.411.1-2/91.
Безусловно, в одной статье невозможно описать все особенности разработки параметрических библиотек. Но можно с уверенностью сказать, что предлагаемый подход позволяет на основе имеющихся наработок, без привлечения дополнительных вложений организовать эффективную работу по проектированию каркасных железобетонных конструкций.
Рис. 6. Пример фрагмента железобетонного ростверка |
Итак, каковы дальнейшие пути развития системы T-FLEX CAD как инструмента объектно-ориентированного проектирования? В первую очередь это автоматизация трудоемких рутинных операций, связанных с оформительской частью проектных работ. Спецификации элементов получаются автоматически в считаные секунды, а вот простановка позиций уже требует времени. Автоматизация подбора элементов по полям нагрузок — тоже весьма интересная задача. Работы в этом направлении идут. И можно надеяться, что реализация этих задач позволит повысить качество проектных работ и уменьшить их трудоемкость.