Разработчик и интегратор российского ПО
для управления жизненным циклом изделий
Тележка с продуктами   телефонная трубка   изображение конверта
Продукты Решения Услуги Загрузки и поддержка Купить Контакты О компании

26.08.2019

Проектирование элементов подвески спортивного автомобиля в среде T-FLEX CAD

Автор: Владимир Вагранский, ведущий специалист отдела внедрения компании «Топ Системы»

T-FLEX CAD

На данный момент существует много технических видов спорта, один из них – автомобильный. Для того чтобы подготовить автомобиль к участию в различных видах соревнований, требуется серьезная инженерная проработка практически каждого узла. Зачастую детали, которые установлены на автомобиле заводом-изготовителем, не удовлетворяют требованиям, предъявляемым к автомобилю на гоночном треке.

В этой статье я рассмотрю приёмы, применяемые при разработке задней подвески спортивного автомобиля для дисциплины «Дрифт». Для данного вида автоспорта характерен специфический набор геометрических параметров положения элементов задней подвески (далее рычагов), который позволяет выставить угол развала задних колес равным нулю, чтобы обеспечить максимальную площадь контакта покрышки с полотном (рис. 1). Также необходимо уменьшить клиренс автомобиля для смещения его центра тяжести. Регулировок подвески, предусмотренных заводом-изготовителем, не хватает, чтобы удовлетворить все вышеперечисленные требования. В связи с этим появляется необходимость в разработке и изготовлении набора элементов задней подвески с большими ходами регулировки. Помимо всего прочего, появляется возможность увеличить прочность и уменьшить массу рычагов, что значительно улучшает характеристики автомобиля.

Набор типов геометрических параметров положения элементов задней подвески
Рис. 1 Набор типов геометрических параметров положения элементов задней подвески

Автомобиль, для которого будут разрабатываться рычаги, – Subaru Impreza WRX GH. На схеме на рис. 2 представлена конструкция подвески автомобиля. Основой задней подвески является подрамник, к которому крепятся 4 пары рычагов.

Схема конструкции задней подвески
Рис. 2. Схема конструкции задней подвески (источник www.subaru.com/engineering/design/awd-benefits.html)

Первая задача для разработки – получение опорной геометрии подрамника

Поскольку получить оригинальные 3D модели от производителя невозможно, то остаётся несколько вариантов:

  • Ручной обмер подрамника и его 3D моделирование
  • 3D сканирование подрамника
  • Получение модели подрамника с помощью КИМ

Самым быстрым и простым методом является 3D сканирование – поэтому я его и выбрал для реализации текущего этапа. Данный метод не является самым точным, но т.к. конструкция подразумевает полностью регулируемые элементы, то все погрешности измерения и изготовления будут компенсированы при сборке и настройке. Результатом 3D сканирования является STL файл, представляющий собой набор треугольников и их нормалей (рис. 3). Чем меньше размер треугольников, тем выше точность полученной 3D геометрии. Далее сетка открывается с помощью T-FLEX CAD, в котором можно провести анализ полученного 3D скана, наложить текстуры (рис. 4), измерить опорные точки и сравнить их с исходной деталью. Расхождение с реальным подрамником оказалось в пределах 0.7мм. В дальнейшем полученный 3D скан будет использоваться как опорная геометрия для 3D моделирования рычагов и их сборки в подрамнике.

Сканированная сетка
Рис. 3. Сканированная сетка

Скан с наложенной текстурой. Фотореализм в T-FLEX CAD
Рис. 4. Скан с наложенной текстурой. Фотореализм в T-FLEX CAD

Вторая задача – получение опорной геометрии заднего кулака

Геометрия была получена с помощью ручных средств измерения и 3D моделирования в T-FLEX CAD, т.к. нужна высокая точность для последующего моделирования переходных кронштейнов для тормозной системы и колесных ступиц (рис. 5). После получения опорной геометрии кулака его можно разместить в 3D сцене T-FLEX CAD. Геометрия положения колеса в пространстве определяется кулаком, который устанавливается в нужное положение относительно подрамника, а именно с нулевым углом развала (рис.6).

Опорная геометрия кулака в T-FLEX CAD
Рис. 5. Опорная геометрия кулака в T-FLEX CAD

В результате проводится замер необходимой длины всех проектируемых рычагов. Погрешности в измерениях снова компенсируются закладываемыми возможностями регулировки длин рычагов. Для данной компоновки задней подвески необходимы 3 регулируемых рычага из 4. Верхний треугольный рычаг остаётся заводским, т.к. изменение ширины колеи автомобиля не планируется. Соответственно, в разработку идут: продольные и поперечные рычаги, реактивные тяги.

Размещение кулака относительно подрамника
Рис. 6. Размещение кулака относительно подрамника

Для комфортной езды по неровным дорогам завод-изготовитель предусматривает шарнирные соединения, представляющими собой сайлентблоки. В спортивных подвесках большую роль играет жёсткость конструкции, поэтому вместо сайлентблоков применяются жёсткие шарнирные подшипники (ШС). Но в некоторых случаях можно использовать заводские шарниры, чтобы сохранить мягкость в одном из направлений.

Поперечный рычаг

При разработке поперечного рычага учитывается расстояние между точками крепления к кулаку и подрамнику. Расположение точек крепления стойки стабилизатора поперечной устойчивости берётся с заводского рычага, также добавляются дополнительные точки крепления для тонких регулировок подвески (рис. 7).

Точки крепления продольного рычага
Рис. 7. Точки крепления продольного рычага

Конструкция рычага представляет собой гнутое основание из листового металла, сваренное со связывающими пластинами. Для сборки предусмотрено соединение типа шип-паз.
Использование листового металла позволяет значительно упростить конструкцию для единичного или мелкосерийного изготовления. Для решения этой задачи использовался модуль листового металла T-FLEX CAD. Также удалось получить конструкцию на 25% легче и жёстче по сравнению с заводскими характеристиками. Регулировка длины рычага осуществляется через промежуточную втулку между телом рычага и шарнирным наконечником. Это даёт возможность регулировать рычаг непосредственно на автомобиле.

Продольный рычаг и реактивная тяга

Разработка реактивной тяги и продольного рычага осуществляется аналогично поперечному рычагу. Их конструкция очень проста. Регулировка выполняется вращением основной втулки, в которой нарезана резьба с разными направлениями. Вращение по часовой стрелке увеличивает длину, против часовой – уменьшает. Гайки фиксируют положение резьбы. Данная схема также позволяет регулировать длину без снятия их с автомобиля.

Продольный рычаг и реактивная тяга
Рис. 8. Продольный рычаг и реактивная тяга

Следующем этапом разработки является 3D сборка узла подвески (рис. 9). Тормозные суппорты, стойки амортизаторов и тормозные диски являются покупными изделиями. После формирования сборочной единицы проходит анализ конструкции на возможные пересечения и правильность выбранных размеров.

Подвеска в сборе. Фотореализм в T-FLEX CAD
Рис. 9. Подвеска в сборе. Фотореализм в T-FLEX CAD

После анализа всех элементов в сборе можно приступить к изготовлению опытного образца. Для этого необходимо подготовить технологические модели и чертежи. Рассмотрим, например, технологическую подготовку поперечного рычага. Так как основой являются детали из листового металла, то их целесообразнее изготовить на оборудовании для раскроя с последующей гибкой (рис. 10).
Такую задачу с лёгкостью решает T-FLEX CAD!

Конструктивные элементы рычага
Рис. 10. Конструктивные элементы рычага

Функциональные возможности системы позволяют оформить чертежи, эскизы и подготовить технологические модели для дальнейшего изготовления. Непосредственно для подготовки и самого изготовления подобного типа деталей используются модули T-FLEX Раскрой и T-FLEX ЧПУ. Для того чтобы решить задачу оптимизации раскроя заготовок, необходимо выгрузить контуры деталей в модуль T-FLEX Раскрой. Данные о наименовании и обозначении деталей передаются автоматически - остаётся только задать параметры кроя и количество деталей.

Схема раскроя в T-FLEX Раскрой
Рис. 11. Схема раскроя в T-FLEX Раскрой

Далее полученная схема раскроя (рис. 11) передается в систему T-FLEX ЧПУ, с помощью которой можно сгенерировать управляющую программу для раскройного оборудования. Система позволяет получать программы для лазерного, фрезерного, электроэрозионного оборудования и т.д. (рис. 12).

Имитатор обработки T-FLEX ЧПУ
Рис. 12. Имитатор обработки T-FLEX ЧПУ

После получения плоских заготовок их необходимо передать на гибку - для этого оформляется чертёж листовой детали и её развёртки с размерами и радиусами сгибов (рис.13).

3D модели и эскиз для гибки
Рис. 13. 3D модели и эскиз для гибки

Конструкция шип-паз позволяет собирать изделия с помощью универсальной оснастки без вспомогательных кондукторов (рис. 14). Это очень сильно влияет на время и стоимость изготовления опытных образцов.

Процесс сварки рычага
Рис. 14. Процесс сварки рычага

Последним этапом детали передаются на окраску, после чего устанавливаются на автомобиль.

Готовый комплект рычагов
Рис. 15. Готовый комплект рычагов

О развитии проекта я напишу в следующем материале.

Дополнительно

Загрузить статью
в формате PDF

Поделиться ссылкой:

© 2024 АО «Топ Системы»